

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Energetic Ionic Liquids based on Anionic Rare-Earth Nitrate Complexes

Guo-Hong Tao,[†] Yangen Huang,[†] Jerry A. Boatz,[‡] and Jean'ne M. Shreeve^{*,†}

Department of Chemistry, University of Idaho, Moscow, Idaho, 83844-2343, USA, and AFRL/RZSP Space and Missile Propulsion Directorate, 10 East Saturn Boulevard, Edwards Air Force Base, CA 93524-7680, USA jshreeve@uidaho.edu

Table of contents

S-1 S-2 *Ab Initio* computational data S-11 References

TABLE S1. Calculated (B3LYP/6-31+ $G^{**}//MP2/6-311++G^{**}$) Total Energy (E_0), Zero-Point Energy (ZPE), Values of Thermal Correction (H_T), and Heats of Formation (HOF) of the cations.

Nama	E_0	ZPE	H_{T}	HOF
Iname	(au)	(au)	(kJ/mol)	(kJ/mol)
guanidinium cation	-205.2570379	0.088421	16.4	575.9
4-amino-1 <i>H</i> -1,2,4-triazolium cation	-297.2005028	0.089612	15.5	910.7
4-amino-1-methyl-1,2,4-triazolium cation	-336.4026071	0.116980	18.1	866.6
4-amino-1-ethyl-1,2,4-triazolium cation	-375.6060696	0.145786	23.2	828.2
4-amino-1-butyl-1,2,4-triazolium cation	-453.9995324	0.202675	30.4	782.6
1,5-diamino-4-methyl-tetrazolium cation	-407.63759	0.121200	23.7	974.3
1,5-diamino-4 <i>H</i> -tetrazolium cation	-368.4345101	0.093584	18.9	1018.0
1,2,4-triazolium cation	-242.00879	0.07324	12.0	835.0 ^[1]
1,2,3,4-tetrazolium cation	-257.98206	0.06029	11.8	1016.5
CH_4	-40.3796224	0.044793	10.0	-74.6 ^[2]
CH_3NH_2	-95.59384	0.06403	11.5	$-23.0^{[2]}$
NH_2NH_2	-111.5836915	0.05331	11.0	$95.4^{[2]}$
NH_3	-56.4154647	0.034384	10.0	-45.9 ^[2]
CH ₃ CH ₃	-79.571631	0.07461	11.6	$-84.0^{[2]}$
CH ₃ CH ₂ CH ₃	-118.76734	0.10328	14.4	-103.8 ^[2]

Geometry Coordinates

B3LYP/6-31+G(d,p) optimized geometries (Å) guanidinium cation

-1.321565	-0.205759	-0.001103
-1.712671	-1.117729	-0.190869
-1.970964	0.542506	0.196530
0.482509	1.247196	-0.000648
-0.111583	2.041503	-0.192387
1.455076	1.435319	0.197728
-0.000067	-0.000207	0.000163
0.839274	-1.041242	0.000175
0.515935	-1.978052	0.195878
1.823085	-0.923670	-0.196822
	-1.321565 -1.712671 -1.970964 0.482509 -0.111583 1.455076 -0.000067 0.839274 0.515935 1.823085	-1.321565 -0.205759 -1.712671 -1.117729 -1.970964 0.542506 0.482509 1.247196 -0.111583 2.041503 1.455076 1.435319 -0.000067 -0.000207 0.839274 -1.041242 0.515935 -1.978052 1.823085 -0.923670

4-amino-1*H*-1,2,4-triazolium cation

С	-0.172838	-1.076494	0.000083
Ν	0.646548	-0.011281	0.000012

Н	0.138613	-2.111769	0.000087
Ν	-1.420322	0.777774	0.000105
С	-0.158532	1.114920	-0.000022
н	0.217205	2 128611	-0.000051
N	2 040327	0.142025	0.000051
	2.040327	-0.142023	-0.000030
н	2.429305	0.280973	-0.840035
H	2.429399	0.280570	0.840123
Ν	-1.401764	-0.583657	-0.000104
Η	-2.279887	-1.094613	-0.000224
4-ami	no-1-methv	1-1.2.4-triaz	olium cation
С	0.006248	-0.892372	0.000023
N	1 094927	-0.099125	0.000000
ц	0.022068	1.072845	0.000000
11 NI	0.023908	-1.972043	0.000022
N	-0.6/2815	1.221604	-0.000062
C	0.633882	1.200485	0.000071
Н	1.273413	2.071788	0.000093
Ν	2.397847	-0.610898	-0.000041
Η	2.889464	-0.311583	-0.839054
Н	2.889422	-0.311798	0.839074
Ν	-1 048666	-0.091165	0.000002
C	-2 477522	-0.450248	0.000002
с u	-2.477522	1 025521	0.000000
п	-2.706511	-1.025321	-0.897703
H	-2.708536	-1.025431	0.89/815
Η	-3.033921	0.485286	-0.000055
4-ami	no-1-ethyl-1	1,2,4-triazol	ium cation
С	-0.453418	-0.887568	-0.137908
Ν	-1.533490	-0.103428	0.053323
н	-0.465042	-1 967675	-0 154799
N	0.204983	1 230107	-0.213824
C	1.022022	1.230107	0.001677
	-1.065625	1.199207	-0.001077
H	-1./2035/	2.065219	0.113005
Ν	-2.816937	-0.624592	0.253783
Н	-3.169571	-0.342863	1.165488
Η	-3.438629	-0.317566	-0.490684
Ν	0.581950	-0.079408	-0.297782
С	2.006363	-0.427326	-0.524049
н	2 025570	-1 498340	-0 738854
и П	2.023376	0.113520	1 424300
n C	2.307140	0.113329	-1.424300
C	2.877284	-0.063878	0.674751
Н	2.578027	-0.615324	1.570632
Н	3.913068	-0.326452	0.443355
Η	2.835814	1.008113	0.880951
4-ami	no-1-hutvl-	1.2.4-triazol	ium cation
C	-1 468585	-0.855263	-0 221426
N	_2 5/6000	-0.156495	0.221420
	-2.340990	-0.130463	0.10//00
Н	-1.423537	-1.930526	-0.314183
Ν	-0.947058	1.301181	-0.244621
С	-2.183445	1.173298	0.158119
Н	-2.840937	1.987160	0.429243

Ν	-3.754124	-0.770754	0.540764
Η	-3.976720	-0.569096	1.512693
Η	-4.498727	-0.457806	-0.077781
Ν	-0.516687	0.026648	-0.479700
С	0.875809	-0.214898	-0.925207
Η	0.902993	-1.239757	-1.304759
Η	1.045223	0.469640	-1.759876
С	1.890069	0.004538	0.201158
Η	1.668208	-0.680790	1.029579
Η	1.784042	1.025836	0.584477
С	3.327571	-0.223032	-0.294010
Η	3.420364	-1.241373	-0.694116
Η	3.535969	0.460086	-1.127533
С	4.364487	-0.010810	0.814701
Н	4.204225	-0.702692	1.648806
Н	5.376146	-0.177806	0.434653
Н	4.321326	1.010001	1.209300
1,5-0	diamino-4-m	ethyl-tetrazo	lium cation
Ċ	0.015400	0.608371	-0.000002
Ν	1.070948	-0.235973	-0.000003
Ν	0.625821	-1.539709	0.000001
Ν	-0.637344	-1.512320	0.000018
Ν	-1.057975	-0.198681	-0.000015
Ν	0.084884	1.933576	0.000021
Н	1.000085	2.369554	0.000013
Н	-0.739521	2.516578	-0.000035
Ν	2.388355	0.176842	-0.000005
Н	2.860771	-0.162415	0.836451
Н	2.860759	-0.162380	-0.836482
С	-2.483670	0.137308	-0.000003
Η	-2.734056	0.702498	0.900845
Η	-2.733930	0.703009	-0.900565
Н	-3.027312	-0.807060	-0.000310
1,5-0	diamino-4 <i>H</i> -1	tetrazolium o	cation
С	-0.169518	0.731015	0.000001
Ν	-0.332230	-0.611344	0.000001
Ν	0.900190	-1.238153	-0.000001
Ν	1.789356	-0.344684	0.000000
Ν	1.165458	0.884456	0.000001
Ν	-1.144434	1.625521	-0.000005
Н	-2.102518	1.291838	-0.000001
Н	-0.969528	2.620728	0.000020
Ν	-1.564057	-1.232884	0.000000

H -1.669015 -1.803770 0.837407 H 1.727190 1.728519 -0.000002

-1.669006 -1.803784 -0.837399

Η

TABLE S2. Calculated (MP2/SBKJC+d^[3]) Total Energy (E_0), Scaled Zero-Point Energy (ZPE),^[4] Values of Thermal Correction (H_T), and Heats of Formation (HOF) of $[M(NO_3)_6]^{3-}$, $[M(L)_4]^-$, $[NO_3]^-$, and $[L]^-$ anions (M = La,Ce; L = F,Cl).

Name	E_0 (au)	ZPE (au)	H_{T}	HOF
			(kJ/mol)	(kJ/mol)
$[La(NO_3)_6]^{3-1}$	-375.386523	0.094049	75.3	-1924.5
$[Ce(NO_3)_6]^{3-1}$	-382.505659	0.094215	74.9	-1911.6
$[LaF_4]^-$	-127.762092	0.005142	22.2	-1996.9 ^[5]
[LaCl ₄] ⁻	-90.962002	0.003179	25.5	$-1254.2^{[5]}$
$[CeF_4]^-$	-134.899719	0.005168	22.2	-1998.2 ^[5]
$[NO_3]^-$	-57.334849	0.013808	10.9	-306.2 ^[6]
[F] ⁻	-24.018946	0	0	$-265.1^{[6]}$
[Cl] ⁻	-14.871336	0	0	-233.8 ^[6]

Geometry Coordinates

MP2/SBKJC+(d) optimized geometries (Å) $[La(NO_3)_6]^{3-}$ anion La .000000 .000000 .000000 0 -1.610453 -.929796 1.926717 Ο -.929796 1.610453 1.926717 0 .000000 -1.859591 -1.926717 Ο 1.610453 .929796 -1.926717 0 -1.610453 .929796 -1.926717 0 .000000 1.859591 1.926717 Ν -2.534764 -1.463447 1.187168 Ν 2.534764 -1.463447 1.187168 Ν .000000 -2.926893 -1.187168 Ν 2.534764 1.463447 -1.187168 Ν -2.534764 1.463447 -1.187168 Ν .000000 2.926893 1.187168 Ο -2.397008 -1.383913 -.090771 0 2.397008 -1.383913 -.090771 Ο .000000 -2.767826 .090771 Ο 2.397008 1.383913 .090771 0 -2.397008 1.383913 .090771 0 .000000 2.767826 -.090771 Ο -3.539128 -2.043317 1.716065 Ο 3.539128 -2.043317 1.716065 Ο .000000 -4.086633 -1.716065 0 3.539128 2.043317 -1.716065 Ο -3.539128 2.043317 -1.716065 Ο .000000 4.086633 1.716065 $\left[\operatorname{Ce(NO_3)_6}\right]^{3-}$ anion Ce .000000 .000000 .000000 0 -1.555958 -.898333 1.902795 0 1.555958 -.898333 1.902795 Ο -1.796666 -1.902795 .000000 Ο 1.555958 .898333 -1.902795 Ο -1.555958 .898333 -1.902795

0	.000000	1.796666	1.902795
Ν	-2.488875	-1.436953	1.177648
Ν	2.488875	-1.436953	1.177648
Ν	.000000	-2.873905	-1.177648
Ν	2.488875	1.436953	-1.177648

Ν	-2.488875	1.436953	-1.177648
Ν	.000000	2.873905	1.177648
0	-2.363399	-1.364509	101132
0	2.363399	-1.364509	101132
0	.000000	-2.729018	.101132
0	2.363399	1.364509	.101132
0	-2.363399	1.364509	.101132
0	.000000	2.729018	101132
0	-3.487490	-2.013503	1.721882
0	3.487490	-2.013503	1.721882
0	.000000	-4.027006	-1.721882
0	3.487490	2.013503	-1.721882
0	-3.487490	2.013503	-1.721882
0	.000000	4.027006	1.721882

References

[1] M. W. Schmidt, M. S. Gordon, J. A. Boatz, J. Phys. Chem., A, 2005, 109, 7285-7295.

[2] D. R. Lide, ed., "STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES" in CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition), <http://www.hbcpnetbase.com>, Taylor and Francis, Boca Raton, FL, **2007**.

[3] The Stevens, Basch, Krauss, Jaisen, and Cundari effective core potentials (ECPs) and the corresponding valence-only basis sets [W. J. Stevens, H. Basch, M. Krauss, *J. Chem. Phys.*, **1984**, *81*, 6026-6033; W. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, *Can. J. Chem.*, **1992**, *70*, 612-630; T. R. Cundari, W. J. Stevens, *J. Chem. Phys.*, **1993**, *98*, 5555-5565] were used. The basis sets for N, O, F, and Cl atoms were augmented with a d-type polarization function (orbital exponents $a_d = 0.8$ for N, O, F [P. C. Hariharan, J. A. Pople, *Theoret. Chim. Acta*, **1973**, *28*, 213-222)and $a_d = 0.75$ for Cl [M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.*, **1982**, *77*, 3654–3665]) and a diffuse s+p shell ($a_{s+p} = 0.0639$, 0.0845, 0.1076, and 0.0483 for N,O,F, Cl, respectively [T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von R. Schleyer, *J. Comput. Chem.*, **1983**, *4*, 294–301]).

[4] Harmonic vibrational frequencies were scaled by a factor of 0.9748 [A. P. Scott, L. Radom, *J. Phys. Chem.*, **1996**, *100*, 16502].

[5] J. E. Bartmess, "Negative Ion Energetics Data" in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P. J. Linstrom, W. G. Mallard, June **2005**, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).

[6] a) M. W. Jr. Chase, C. A. Davies, J. R. Jr. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, *JANAF Thermochemical Tables (Third Edition)*, J. Phys. Chem. Ref. Data, Suppl. 1, **1985**, *14*, 1–1856; b) M. W. Jr. Chase, *NIST-JANAF Themochemical Tables, Fourth Edition*, J. Phys. Chem. Ref. Data, Monograph 9, **1998**, 1–1951.